Research and Reviews: Journal of Chemistry

Synthesis and Anti-inflammatory Evaluation of 1,2,4 Triazole Derivatives.

Meenakshi Virmani ${ }^{\text {A }}$, Sabir Hussain ${ }^{B}$.
ADepartment of Chemistry, Shri Jagdish Prasad Jhabarmal Tibrewala University, Jhunjhunu(333001), Churu Road, Chudela (Rajasthan), India.
B Department of Chemistry, Echelon Institute of Tech. (M.D University, Rohtak) Faridabad, Haryana 121106, India.

Research Article

Received: 01/03/2014
Revised: 18/03/2014
Accepted: 24/03/2014

*For Correspondence

Department of Chemistry, Shri Jagdish Prasad Jhabarmal Tibrewala University, Jhunjhunu(333001), Churu Road, Chudela (Rajasthan), India.

Keywords: Triazol, Ibuprofen, 1,2,4-Triazole derivatives, Antiinflammatory, Standard drug

Abstract

A mixture of 4-hydroxyphenylacetic acid, absolute ethanol, few drops of concentrated sulphuric acid along with a small porcelain chip on reaction formed Ethyl-(4-hydroxyphenyl) acetate (1). On condensing mixture of (1), hydrazine hydrate and absolute ethanol formed 4Hydroxyphenyl acetic acid hydrazide (2). Further mixture of 2, aryl/alkyl isothiocyanate and ethanol was refluxed and formed N^{1}-[2-(4Hydroxyphenyl) acetyl] N^{4}-alkyl/aryl-3-thiosemicarbazide (3a-i). A suspension of (3a-3i) in ethanol, sodium hydroxide is refluxed for 2 hours on a water bath and formed 5-(Hydroxyphenyl) methyl-4-alkyl/aryl-2-mercpto-1,2,4(H)-triazoles (4a-i). The 1,2,4-triazole derivatives of 4hydroxyphenyl acetic acid (4a-i) showed anti-inflammatory activity and lbuprofen was taken as the standard drug.

INTRODUCTION

Most of the present diseases are due to the invasion by the pathogenic organisms like bacteria, fungi, virus. To treat these diseases many potent and broad spectrum antibiotics were discovered eg: ampicillin, amoxicillin, Carbenicillin, Oflaxacin, Tetracyclines etc. Even though antibiotics are life saving drugs in therapeutics but they are potentially harmful. These effects include allergic and anaphylactic reactions, super-infection, development of resistance, destruction of normal non-pathogenic bacterial flora and selective toxicity like aplastic anemia, kidney damage etc. Infections often produce pain and inflammation. So there is need to search less toxic drugs than those based on natural sources resulted in the introduction of synthetic substances as drugs in the late $19^{\text {th }}$ century and their widespread use in the $21^{\text {th }}$ century. A considerable amount of research activities are directed towards potent, more specific and less toxic anti-inflammatory agents and it offers challenging task in the development of novel synthetic strategies; Nitrogen heterocycles; A five member ring containing three nitrogen is known as triazole such as 1.2.3 triazole, or 1.2.4 triazole. 1,2,4-triazoles, are among the various heterocycles that have received the most attention during the last two decaded as potential antimicrobial agents. The pharmacologically important heterocycles with nitrogen bridge derieved from 1,2,4-triazole played the way toward active research in trizole chemistry. 1,2,4-triazole and their derivatives are found to be associated with various biological activities such as antifungal [1,2], antimicrobial ${ }^{[3,4,5,6]}$, insecticidal ${ }^{[7]}$, cytotoxic ${ }^{[8]}$, anti-tubercular ${ }^{[9]}$, antiviral [10], anti-haemostatic activity [11], antitumor [12], antibacterial [13,14] and nematicidal [15].

In view of the versatile importance of the triazoles it is worthwhile to prepare and study some substituted 1,2,4-triazoles as a anti-inflammatory agent.

EXPERIMENTAL SECTION

5-(4-Hydroxyphenyl) methyl-4-phenyl-3-mercapto-1,2,4(H)-triazole (4a)

The thiosemicarbazide 3 (0.001 mole) was added to ethanol (20 ml) in a 100 ml round bottom flask. To it sodium hydroxide solution ($4 \mathrm{~N}, 2 \mathrm{ml}$) was added, resulting in the formation of clear solution. The solution was refluxed for 2 hours on water bath, concentrated, cooled and filtered. The pH of the filtrate was adjusted to 5-6 with
dilute acetic acid. The reaction mixture was kept aside for 1 hour. Solid separated was filtered, washed with water, dried and re-crystallized with ethanol.

Purity of the compounds (3a-i) was checked by TLC on silica gel G plates using toluene: ethylacetate: formic acid (5:4:1) as solvent system and the spot was located by exposure to iodine vapours.

Yield: 68 \%, m.p.: $192{ }^{\circ} \mathrm{C}$, Rf: 0.61, Molecular formula: $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$, Molecular weight: 283.35. \%N: Found: 15.06\%; Calcd: 14.83 \%.

IR (KBr): 3574 (OH), 2974 (C-H), 1620 ($\mathrm{C}=\mathrm{N}$), 1578 (C=C), 1169 (C=S).

5-(4-Hydroxyphenyl) methyl-4-(4'-bromophenyl)-3-mercapto-1,2,4(H)-triazole (4b)

The thiosemicarbazide 3 b (0.001 mole) was added to ethanol $(20 \mathrm{ml})$ in a 100 ml round bottom flask. To it sodium hydroxide solution ($4 \mathrm{~N}, 2 \mathrm{ml}$) was added, resulting in the formation of clear solution. The solution was refluxed for 3 hours on water bath, concentrated, cooled and filtered. The pH of the filtrate was adjusted to 5-6 with dilute acetic acid. The reaction mixture was kept aside for 1 hour. Solid separated was filtered, washed with water, dried and recrystallized with ethanol.

Yield: \%, m.p. $220^{\circ} \mathrm{C}$, Rf: 0.80, Molecular formula: $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OSBr}$, Molecular weight: 362.24. \%N: Found: 11.33\%; Calcd: 11.60\%.
IR (KBr): $3555(\mathrm{OH}), 2981$ (C-H), 1657 (C=N), 1586 (C=C), 1186 (C=S).
${ }^{1}$ HNMR (DMSO-d $)$: 2.48 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.54 (d, 2H, 2, 6-ArH), 6.68 (d, 2H, 3, 5-ArH), 7.21 (d, 2H, 2', 6'-ArH-Br), 7.50 (d, 2H, 3', 5'-ArH-Br), 9.29 (s, 1H, SH), 13.70 (bs, 1H, OH).
Mass (m/z): $362\left(\mathrm{M}^{+}\right), 329,303,133,107$.

5-(4-Hydroxyphenyl) methyl-4-(4'-chlorophenyl)-3-mercapto-1,2,4(H)-triazole (4c)

The thiosemicarbazide 3c (0.001 mole) was added to ethanol (20 ml) in a 100 ml round bottom flask. To it sodium hydroxide solution ($4 \mathrm{~N}, 2 \mathrm{ml}$) was added, resulting in the formation of clear solution. The solution was refluxed for 2 hours on water bath, concentrated, cooled and filtered. The pH of the filtrate was adjusted to 5-6 with dilute acetic acid. The reaction mixture was kept aside for 1 hour. Solid separated was filtered, washed with water, dried and recrystallized with ethanol.

Yield: 76 \%, m.p.: $236{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}$: 0.55 , Molecular formula: $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OSCl}$, Molecular weight: 317.79. \%N: Found: 13.14\%; Calcd: 13.22 \%.

IR (KBr): 3566 (OH), 2992 (C-H), 1649 (C=N), 1586 (C=C), 1178 (C=S), 784 (C-Cl).
${ }^{1}$ HNMR (DMSO-d $)_{6}$: $2.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.56$ (d, 2H, 2, 6-ArH), 6.69 (d, 2H, 3, 5-ArH), 7.23 (d, 2H, 2', 6'-ArH-Cl), 7.53 (d, 2H, $\left.3^{\prime}, 5^{\prime}-\mathrm{ArH}-\mathrm{Cl}\right), 9.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 13.83$ (s, 1H, OH).
Mass (m/z): $317\left(\mathrm{M}^{+}\right), 284,258,133,107$.

5-(4-Hydroxyphenyl) methyl-4-(2'-chlorophenyl)-3-mercapto-1,2,4(H)-triazole (4d)

The thiosemicarbazide 3d (0.001 mole) was added to ethanol (20 ml) in a 100 ml round bottom flask. To it sodium hydroxide solution ($4 \mathrm{~N}, 2 \mathrm{ml}$) was added, resulting in the formation of clear solution. The solution was refluxed for 4 hours on water bath, concentrated, cooled and filtered. The pH of the filtrate was adjusted to 5-6 with dilute acetic acid. The reaction mixture was kept aside for 1 hour. Solid separated was filtered, washed with water, dried and recrystallized with ethanol.

Yield: 67 \%, m.p.: $206{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}$: 0.62, Molecular formula: $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OSCl}$, Molecular weight: 317.79. \%N: Found: 12.96\%; Calcd: 13.22 \%.

IR (KBr): 3576 (OH), 2963 (C-H), 1648 (C=N), 1588 (C=C), 1181 (C=S), 769 (C-Cl).

5-(4-Hydroxyphenyl) methyl-4-(4'-fluorophenyl)-3-mercapto-1,2,4(H)-triazole (4e)

The thiosemicarbazide 3 e (0.001 mole) was added to ethanol (20 ml) in a 100 ml round bottom flask. To it sodium hydroxide solution ($4 \mathrm{~N}, 2 \mathrm{ml}$) was added, resulting in the formation of clear solution. The solution was refluxed for 3 hours on water bath, concentrated, cooled and filtered. The pH of the filtrate was adjusted to 5-6 with dilute acetic acid. The reaction mixture was kept aside for 1 hour. Solid separated was filtered, washed with water, dried and recrystallized with ethanol.

Yield: 66 \%, m.p. $248^{\circ} \mathrm{C}$, Rf: 0.66 , Molecular formula: $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3}$ OSF, Molecular weight: 301.34. \%N: Found: 14.10\%; Calcd: 13.94 \%.

IR (KBr): 3545 (OH), 2986 (C-H), 1638 (C=N), 1596 (C=C), 1145 (C=S), 1090 (C-F).

5-(4-Hydroxyphenyl) methyl-4-(4'-methylphenyl)-3-mercapto-1,2,4(H)-triazole (4f)

The thiosemicarbazide 3 f (0.001 mole) was added to ethanol (20 ml) in a 100 ml round bottom flask. To it sodium hydroxide solution ($4 \mathrm{~N}, 2 \mathrm{ml}$) was added, resulting in the formation of clear solution. The solution was refluxed for 2 hours on water bath, concentrated, cooled and filtered. The pH of the filtrate was adjusted to 5-6 with dilute acetic acid. The reaction mixture was kept aside for 1 hour. Solid separated was filtered, washed with water, dried and recrystallized with ethanol.

Yield: 81 \%, m.p. $250{ }^{\circ} \mathrm{C}, \mathrm{Rf}_{\mathrm{f}}$: 0.64, Molecular formula: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$, Molecular weight: 297.37. \%N: Found: 13.94\%; Calcd: 14.13 \%.
IR (KBr): 3547 (OH), 2979 (C-H), 1645 (C=N), 1591 (C=C), 1162 (C=S).
${ }^{1}$ HNMR (DMSO-d ${ }_{6}$): $2.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.56$ (d, 2H, 2, 6-ArH-CH3$), 6.69$ (d, 2H, 3, 5-ArH-CH3), 7.07 (d, 2H, 2', $\left.6^{\prime}-A r H\right), 7.27$ (d, 2H, 3', $\left.5^{\prime}-A r H\right), 9.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 13.64$ (bs, 1H, OH).
Mass (m/z): $297\left(\mathrm{M}^{+}\right), 298(\mathrm{M}+1), 264,238,133,107$.

5-(4-Hydroxyphenyl) methyl-4-(2'-methylphenyl)-3-mercapto-1,2,4(H)-triazole (4g)

The thiosemicarbazide $3 \mathrm{~g}(0.001$ mole) was added to ethanol (20 ml) in a 100 ml round bottom flask. To it sodium hydroxide solution ($4 \mathrm{~N}, 2 \mathrm{ml}$) was added, resulting in the formation of clear solution. The solution was refluxed for 4 hours on water bath, concentrated, cooled and filtered. The pH of the filtrate was adjusted to 5-6 with dilute acetic acid. The reaction mixture was kept aside for 1 hour. Solid separated was filtered, washed with water, dried and recrystallized with ethanol.

Yield: 66 \%, m.p.: $226{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}$: 0.57 , Molecular formula: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$, Molecular weight: 297.37. \%N: Found: 13.78\%; Calcd: 14.13 \%.

IR (KBr): 3561 (OH), 2971 (C-H), 1647 (C=N), 1586 (C=C), 1157 (C=S)

5-(4-Hydroxyphenyl) methyl-4-(4'-methoxyphenyl)-3-mercapto-1,2,4(H)-triazole (4h)

The thiosemicarbazide 3 h (0.001 mole) was added to ethanol (20 ml) in a 100 ml round bottom flask. To it sodium hydroxide solution ($4 \mathrm{~N}, 2 \mathrm{ml}$) was added, resulting in the formation of clear solution. The solution was refluxed for 2 hours on water bath, concentrated, cooled and filtered. The pH of the filtrate was adjusted to 5-6 with dilute acetic acid. The reaction mixture was kept aside for 1 hour. Solid separated was filtered, washed with water, dried and recrystallized with ethanol.

Yield: 78%, m.p. $220^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.71$, Molecular formula: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, Molecular weight: $313.37 . \% \mathrm{~N}$: Found: 13.04%; Calcd: 13.41 \%.
IR (KBr): 3568 (OH), 2991 (C-H), 1631 (C=N), 1589 (C=C), 1163 (C=S).
${ }^{1}$ HNMR (DMSO-d $)_{6}$): $2.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.57$ (d, 2H, 2, 6-ArH), 6.69 (d, $2 \mathrm{H}, 3,5-\mathrm{ArH}$), $6.99(\mathrm{~d}, 2 \mathrm{H}$, $2^{\prime}, 6^{\prime}-\mathrm{ArH}^{\prime}-\mathrm{OCH}_{3}$), $7.09\left(\mathrm{~d}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\mathrm{ArH}^{2}-\mathrm{OCH}_{3}\right.$), $9.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 13.25(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH})$.

5-(4-Hydroxyphenyl) methyl-4-n-butyl-3-mercapto-1,2,4(H)-triazole (4i)

The thiosemicarbazide $3 \mathbf{i}$ (0.001 mole) was added to ethanol (20 ml) in a 100 ml round bottom flask. To it sodium hydroxide solution ($4 \mathrm{~N}, 2 \mathrm{ml}$) was added, resulting in the formation of clear solution. The solution was refluxed for 3 hours on water bath, concentrated, cooled and filtered. The pH of the filtrate was adjusted to 5-6 with dilute acetic acid. The reaction mixture was kept aside for 1 hour. Solid separated was filtered, washed with water, dried and recrystallized with ethanol.

Yield: 57 \%, m.p. $170^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}: 0.73$, Molecular formula: $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}$, Molecular weight: $263.36 . \% \mathrm{~N}$: Found: 15.72\%; Calcd: 15.96 \%.
IR (KBr): 3567 (OH), 2982 (C-H), 1629 (C=N), 1594 (C=C), 1174 (C=S).
${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$: 0.76-0.80 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.16-1.27 (merged m, $4 \mathrm{H},-\mathrm{CH}^{2} \mathrm{CH}_{2}-$), $2.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.74-3.78(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{N}-\mathrm{CH}_{2}$), 6.67 (d, 2H, 2, $6-\mathrm{ArH}$), 7.02 (d, 2H, 3, $5-\mathrm{ArH}$), 9.11 (s, 1H, SH), 13.55 (s, 1H, OH).
Mass (m/z): $263\left(\mathrm{M}^{+}\right), 230,204$.

RESULT AND DISCUSSION

5-(Hydroxyphenyl) methyl-4-alkyl/aryl-2-mercpto-1,2,4(H)-triazoles (4a-i)

The purity of the compounds (4a-i) was checked by TLC and its characterization on the basis of IR, NMR and Mass spectral data.

The IR spectrum of the compounds (4a-i) showed peaks at $3576-3545 \mathrm{~cm}^{-1}$, OH stretching; 2992-2963 $\mathrm{cm}^{-1}, \mathrm{CH}$ stretching; 1657-1620 $\mathrm{cm}^{-1}, \mathrm{C}=\mathrm{N}$ stretching; 1596-1578 $\mathrm{cm}^{-1}, \mathrm{C}=\mathrm{C}$ stretching of aromatic rings and 1186$1145 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{S}$ stretching vibrations.

The NMR spectrum of the compound $4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{i}$ showed a singlet respectively at $\delta 2.48,2.50$, at $\delta 2.50$ indicating the presence of CH_{2} protons.

4f, 4h showed two singlets respectively at $\delta 2.36$ and $\delta 2.50$ for CH_{3} and CH_{2} protons, at $\delta 2.50$ and $\delta 3.80$ for CH_{2} and OCH_{3} protons.
$4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{f}, 4 \mathrm{~h}, 4 \mathrm{i}$ showed a singlet and a broad singlet respectively at $\delta 9.29$ at $\delta 13.70$, at $\delta 9.32$ and δ 13.83 , at $\delta 9.31$ and at $\delta 13.64$, at $\delta 9.29$ and at $\delta 13.25$, at $\delta 9.11$ and at $\delta 13.55$ for SH and OH protons.
$4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{f}, 4 \mathrm{~h}, 4 \mathrm{i}$, showed two doublets in the aromatic region respectively centered at $\delta 6.54$ and $\delta 6.68$, at $\delta 6.56$ and $\delta 6.69$, at $\delta 6.56$ and $\delta 6.69$, at $\delta 6.57$ and $\delta 6.69$, at $\delta 6.57$ and $\delta 6.69$, indicating the presence of 2 , 6 - and 3 , 5 - phenolic protons respectively.
$4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{f}, 4 \mathrm{~h}$, showed four protons of p -bromophenyl ring as doublets respectively centered at $\delta 7.21$ and $\delta 7.50$, at $\delta 7.23$ and $\delta 7.53$, at $\delta 7.07$ and $\delta 7.27$, at $\delta 6.99$ and $\delta 7.09$ indicating the presence of $2^{\prime}, 6^{\prime}$ - and 3^{\prime}, 5 '- aromatic protons.

The NMR spectrum of the compound $4 i$ showed a triplet at $\delta 0.76-0.80$ indicating the presence of methyl protons of n-butyl group. The $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CH}_{2}$ protons of n-butyl group were merged together and obtained as a multiplet at $\delta 1.16-1.27$. The $\mathrm{NH}-\mathrm{CH}_{2}$ protons of n-butyl group was obtained as a triplet at δ 3.74-3.78.

The structure of the compounds $4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{f}, 4 \mathrm{i}$ was further supported by their mass spectral data, which showed molecular ion peak M^{+}respectively at $\mathrm{m} / \mathrm{z} 362$, at $\mathrm{m} / \mathrm{z} 317$, at $\mathrm{m} / \mathrm{z} 297$, at $\mathrm{m} / \mathrm{z} 263$ and corresponding to the molecular formula respectively $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OSBr}, \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OSCl}, \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}, \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}$. Further peaks were observed respectively at $\mathrm{m} / \mathrm{z} 329,303,133$ and107, at $\mathrm{m} / \mathrm{z} 284,258,133$ and 107 , at $\mathrm{m} / \mathrm{z} 264,238$, 133 and 107, at m/z 230 and 204.

Biological activity

The anti-inflammatory activity of 1,2,4-triazole derivatives was carried out by the method of Winter et al ${ }^{180}$. 4-Hydroxyphenyl acetic acid was used to synthesize triazole derivatives and were evaluated for anti-inflammatory activity. The 1,2,4-triazole derivatives of 4-hydroxyphenyl acetic acid (4a-i) showed anti-inflammatory activity ranging from 45.45% to 68.17% inhibition at $70 \mathrm{mg} / \mathrm{Kg}$ oral dose after 4 hours, whereas the standard drug lbuprofen showed 86.35% inhibition at the same oral dose (Table-1). The triazole derivativbes having n-butyl group (4i) at the $4^{\text {th }}$ position of the triazole nucleus showed maximum inhibition (68.17\%). Replacement of n-butyl group with 4-bromophenyl (4b), 4-chlorophenyl (4c) and 4-methoxyphenyl (4h) results in slight decrease in the activity, but when these groups were replaced with 4-methylphenyl (4f) and 2-methylphenyl (4g) groups, a marked decrease in activity have been observed. Rest of the compounds showed moderate activity (Table-1).

Table 1: Anti-inflammatory Activity of 1,2,4-Triazole Derivatives

Compound No.	Mean Paw Volume \pm SEM	\% Inhibition \pm SEM
4 a	0.107 ± 0.0042	$51.51 \pm 1.916^{*}$
4 b	0.077 ± 0.0061	$65.15 \pm 2.794^{*}$
4 c	0.090 ± 0.0044	$59.08 \pm 2.033^{*}$
4 d	0.106 ± 0.0066	$51.51 \pm 3.00^{*}$
4 e	0.100 ± 0.0051	$54.54 \pm 2.347^{*}$
4 f	0.120 ± 0.0051	$45.45 \pm 2.347^{*}$
4 g	0.110 ± 0.0044	$49.99 \pm 2.033^{*}$
4 h	0.090 ± 0.0044	$59.08 \pm 2.033^{*}$
4 i	0.070 ± 0.0068	$68.17 \pm 3.105^{*}$

*P<0.0001, compared w.r.t. control. Data were analyzed by student's t-test for n= 6

(1)
$\mathrm{NH}_{2} \mathrm{NH}_{2} \mathrm{H}_{2} \mathrm{O}$
Abs. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

(3a-i)
(2)

4i:

$$
\mathrm{n}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-
$$

Scheme-1

REFERENCES

1. Razaei Z, Khabnadideh S, Pakshir ZH, Amir F, Assadpour. Eur J Med Chem. 2009; 44 (8): 3064-3067.
2. Chu, Chang-Hu, Zhang, Yan, Zhang, Zi-Yi, Li Zhi-Chun, Liao Ren-An. Indian J Chem -B. 2000; 39B(10): 791793.
3. Desai S, Laddi U, Bennur R, Bennur S. Indian J Chem -B. 2013; 52B(08): 1176-1181.
4. Gautam N, Chourasia OP. Indian J Chem B. 2010; 49B(07): 956-959.
5. Gautam N, Chourasia OP. Indian J Chem. 2010; 49B: 956-959.
6. Hussain S, Mohd A, Sharma J. J. of Ultra scientist of Phy. Sci. 2008; (20)2.
7. Gautam N, Chourasia O P. Indian J Chem -B. 2010; 49B(07): 956-959.
8. Ilango K, Valentina P. Eur J Chem. 2012; 1 (1): 50-53.
9. Mail RK, Somani RR, Toraskar MP, Mail K K, Naik P P, Shirodkar PY. Int J Chem Tech Res. 2009; 1(2): 168173.
10. Jois YHR, Kwong CD, Riordan JM, Montgomery JA, Secrist JA. J of Heterocyclic Chem. 2009 (3); 30(5).
11. Kamble RR, Belgur S. J. of Chem. Sci. 2006; 118(2):191-195.
12. Reddy CH, Narsimha V, Raju S, Reddy M, Nagi, Rajanarendar E. Indian J Chem -B. 2010(10); 49B(12): 1667-1670.
13. Jakhar A. Makrandi JK. Indian J Chem -B. 2012; 51B(01): 313-317.
14. Sayed EI, Refat. Indian J Chem -B. 2006; 45B(03): 738-746.
15. Bijul, Lakshman A, Gupta RL, Prasad D. Indian J Chem -B. 2010; 49B(12): 1657-1661.
